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FOREWORD. This contribution is intended as an introductory survey of the

topological concepts that underlie the DENDRAL system for chemical structure
notation. The main purpose of the system is to provide a language in which a
computer program can frame hypotheses of organic chemistry. For example, a
program to generate all the isomers of a given formula has already been imple-

mented.

This introduction is especially intended for users who wish only
a general outline of DENDRAL rather than its full details of syntax. Some
notation is necessarily used. This resembles the definitive DENDRAL forms,

but the complete manual should be used as a definitive statement of the lan-

guage.




SYSTEMATICS OF ORGANIC MOLECULES, GRAPH TOPOLOGY

AND HAMILTOXN CIRCUITS

Joshua Lederberg
Genetics Department
Stanford University School of Medicine
Palo Alto, California
The structural formula for an orginic molecule is a paragon of a topological
graph, that is, the connectivity relations of a set of atoms. True, we
recognize more thaﬁ one type of connection, double, triple, and non-covalent
bonds, as well as single bonds. However, from an electronic standpoint the special
bonds could just as well be denoted as special atoms. The structural graph
does not specify the geometry, that is, the bond distances and bond angles of
the molecule, In fact, this is known for only a small proportion of the
cnormous number of organic molecules whose structufe is very well known from
a topological standpoint. Most of the syllabus of elementary organic chemistry
thus comprises a survey of the topological possibilities for the distinct ways
in which sets of atoms may be connected, subject to the rules of valence. The
student then also learns rules vhich prohibit some configurations as unstable
or unrealizable (and may later earn his scientific reputation by justifying
or overturning one of these rules). The field of organic chemistry has,
however, reached its present stature without many benefits from any general
analysis of molecular topology. These benefits might arise in applications
at two extremes of sophistication: the teaching of chemical principles to
college undergraduates, and to elect¥onic computers. They may also apply to
the vexatious prdblems of nomenclature and systematic methods of information

retrieval.

Although the topological character of chemical graphs was reéognized by
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the first topologists, very little wor: hus been done on the explicit classifi-

- cation of the graphs having the most ciemical interest. Some difficult

. problems, e.g., the enumeration of polyhedra, remain unsolved. However, the

main obstacle may be the seeming triviality of the problems, many topologists
being quite unsatisfied with systems restricted to 2- or 3-dimensional space.

This article will review some elementary features of graphs that may be
used for a systematic outline of organic chemistry;' The same theory has the
broader significance of classifying the possible nets of relationships among
the members of a set of objects. For present purposes, our graphs will be
undirected, that is, any connections are reciprocal and unpolarized. Further-
more, our atoms have a maximum valence of 4. When we come to cyclic structures
we shall have occasion to study an even more restricted set of graphs, those
in which every node has a valence of 3. |

A problem statement might be: enumerate all the distinct structural
isomers of a given elementary composition, say C3H7N02. This is tantamount to
producing all the connected graphs that can be consé;ﬁcted fron the atoms of
the formula, linked tc one another in all distinct ways, compatible with the
valence established for each elemeat (4, 3, and 2 for C, N, O, respectively).
For compactness, H can be left implicit, being later restored at every unused
valence.
.

Our main approach throughout this article is mapping, a rule of correspon-
dence between a part of the chemicﬁl structure and a part of some abstract
graph. Thus, each atom may be mapped on to a node: each Eégg to an edge or

link of the graph. For further analysis, however, it will be important to map

from complexes of the structure to elements of a graph. The abstract graphs

lend themselves to canonicalvrorms, i.e., a choice among equivalent representations



3.

according to precise rule. Since the root probleﬁ is generally not that of
producing all possible combinations of atoms, but recognizing which forms are
unique, this is of utmost importance. Chemistry will re-emerge after a few
levels of abstraction.

Thése principles have been elaborated in a computer-oriented language
"Dendral-64" which is described more fully elsewhere for the purpose of
possible implementation in programming systems (Lederberg, 196L4).

Trees are l-connected graphs, i.e., can be separated into two parts by
cutting any link, They correspond to the acyclic structures of organic
chemistry. How may we establish a canonical form for a tree, after first
noting its order (number of nodes).

The first sfep might be to find some unique place to begiﬁkfhe description.
- A tree must have at least two terminals, and may have many more if highly
branched; these are therefore not very suitable. However, each tree has a
unique center. In fact Jordan (1869) showed that any tree has two kinds of
center, a mass-center.and a radius-center. Each cen£;r has a unique place in
any trce; the two may or may not coincide.

To find the radius-center, the tree is pruned one level at a time, being
cut back one link from every terminal at each level. This will leave, finally
an wltimate node or node-pair (in effect, edge) as the center; the radius of
the graph is the number of levels of pruning needed to reach the center.

To idcntify the mass-center of a tree, we must consider the two or more
branches that join to each non-terminal node. The center is the node whose
branches have the most evenly balanced allocation of the remaining mass (node-
count) of the tree. This is the same as to say that none of the pendant
branches excced half the total mass. A mass of even number allows the possi=-

bility of the center being a node pair or edge which joins equal halves.

e 7 A e ——— A _ e u - v
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Either of the centers (Fig. 1) is unique, and so could solve our problem
of éefining a canonical starting point of a description. The center of mass
is more pertinent to finding a list of isomers, which of course enjoy the
same mass. The radius-center is ill-adapted for this, but matches con-
ventional nomenclature, which is based on finding the longest linear path,
i.e., a diameter. The diameter is not necessarily unique. For example, urea
has three diameters, N - 3 - N and N - é = 0 (twice), but Just one radius-
center, the C _atém. The problem of generating isomers is the main justifica-
tion for adopting the mass-center over the radius-center to work out canonical
forms.

In chemical terms, the center divides the graph into two or more radicals.
These radicals can be ordered by obvious compositional principles, giving rise
to a canonical description of the whole graph in a linear code. Thus arginine
becomes (C~C-N-C(N)-N C-C(N)-C(0)-0] or, in a parenthesis-free notation
with some abbreviations +2.,N.C.:NN 2..NC.:00 . Any linear code
has an implicit number system: each atom is numbered according to when it is
denoted in the string.

Some thirty years ago, Henze and Blair (1931) showed how Jordan's principle
could be used for the enumeration of isomers of saturated hydrocarbons qnd
some simple derivatives of them. Here, the nodes are all the same (carbon
atoms) and the enumeration can proceed by recursion from smaller to larger
complexes, For example, for the isomers of undecane, Clleh, one atom is desig~
nated as center, leaving 10 to be aiiocated among 2, 3 or 4 branches. Only the

following partitions satisfy the rules (leaving dissymmetry out of account):




5.

BRANCHES

2 c<{Dj 5,5

..o
. LA
\D

4 c

)

=

NN
v M W v v
NN N

C.

To complete the solution, one must have calculated the number of alkyl radicals
-CS' -Ch, etc. To illustrate with Cs:
The radical must have an apical atom, leaving the rest to be partitioned

in all distinct ways among 1, 2 or 3 pendant branchés, the radicals of the next

level. Thus we have:

The count of -Cn radicals is thus derived from the table for -Ci, taking i from

hY
v

lton - 1, and the process may be itcrated as far as needed, i.e., until

partitions into units, Cl » prevail. No deep mathematical insight is needed to



verify that the first steps of the alkyl series Cl, C2, 03, Cy, have

'1,1,2,b forms respectively.

No closed algebraic expression has been found for this enumeration.
However, the recursive expansion was done by hand (Henze and Blair, 1931) with a
few trivial eréors found by a computer check; no organic chemist will be
surprised by the enormous scope of his field. (Table 1).

The total range of acyclic compounds is of course very much larger than
these subsets. At each step, instead of partitioning a mere number of nodes, an
allocation to constituent radicals takes account of the kind as well as number
of unused atoms. However, the specification of a hiérarchy of ordering, which
may be done almost arbitrarily to suit computational convenience, permits the
same principles to be applied to a complete enumeration of structural isomers

of a given composition, for example of alanine, C3H7N020 (Table 2.)

Cyclic Structures

Cyclic graphs are much less tractable, since every’path will return back
to the complex, and a center is less easily defined.‘VSufficient reminder of ’
the taxonomic difficulties posed by rings is the popularity of the Ring Index |
(196k4) wherein the "11524 rings known to chemistry" are laid out, together with a

profusion of synomyous and alternative numbering systems to map them as nodes.

For example, naphthoyl pyridine would ultimately form a tree, Rl - Q\- R2 » Rl and R2.

. 0
We now consider the domain o;’strictly cyclie structures. These are 2-

connected graphs, since at least 2 (sometimes more) links must be cut in order
to separate the graph.
For further analysis, we distinguish the trivalent vertices of the structure

atoms that join 3 paths, or branch points. We can then construct the full set of
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abstract, trivalent graphs. Define a path as a link or an unbranched chain of
links and atoms. The paths between vertices of the structure can then be
mapped onto the edges of an abstract grapa which is regularly trivalent or
trihed{al. To illustrate, observe how pyrene is mapped onto an abstract graph
of 6 vertices, indeed, the abstract prism.

i -CC- ¢
Iziz
| , .~
(=
Pyrene

(a) (b) (e) (a)

Some vertices are l-valent, in so-called spiro forms, but these graphs

-CCC-

-CCC-

" can be mapped-onto 3-valent graphs by expanding each b-valent node into a pair
of 3-valent nodes. That is, >'\/ becomes > —'\/ + There is an obvious
relationship between the number of vertices and the number of rings conventionally
ascribed to a structure. We start with, say, benzene, O vertices, and 1l ring.
Then naphthalene, 2 vertices and 2 rings. Each additional ring'entails 2
more vertices. Hence, for r rings and n vertices

r=1+n/2,
and for these trivalent graphs, n must be an even integer. Recalling that a Y-
valent vertex maps into 2 3-valent nodes, we can write

r=1l+n/2+gq
for q Y-valent vertices. This calculation agrees with the Ring Index rule which
coﬁnts rings as the number of cuts needed to convert a ring structure into a
tree.

As each edge joins 2 nodes, a trivalent graph of order n will have

3n/2 edges.

Enumerating the trivalent graphs. A trivalent graph may have several
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representations, and some effort may b: required to relate them to one another,
and to decide which form is to be r¢,ja-dei as a canonical reference for mapping
purposes. Thus, the graphs of Figure 2 are all topologically equivalent or
isomorphic. This is to say, the& ell represent the same connections of node

to (threc) nodes. A meaningful envmeration must unify these isomorphisms. Fure
thermore, it should relate to a convenient code by which to refer to each

graph, better still, to embody a reconsiruction. Finally, it should generate

an obvious numbering of the nodes and edges.

Hamilton circuits. A practical key to the solution of this problem, as

to many other network problems, takes ndvantage of the Hamilton circuits found

in most of the abstract graphs having chemical interest. - A Hamilton circuit
(HC) is a round trip through the graph that traverses each node just once.

It therefore uses n edges, leaving out n/2 edges. Figure 3 is Hamilton's
own example, the dodecahedron, proposed by him as a parlor game, each node
representing a city that the round.-the-wor.d traveller would not wish to
revisit. The utility of HC representations will bec&me evident.

Finding all HC's of a graph may be a challenging game, but it is reduced
to a merely tedious algorithm on the ccmputer. Start from an arbitrary node.
Trace a path as through a maze, each node presenting ; binary choice of
different edges. If the chosen path reverts to a node already visited, backe
track onc step. A successful path has n correct choices. Thus, at most
2™ gearch steps will exhaust all possible paths; in practice, closer to 1l/n
times this number will be needed to ddentify all the HC's. Even for n up
to 20 this is a modest task. And if the work has been done once, finding any

HC, at perhaps n-fold less effort, will enable a given graph to be related to the

o - e, o o WA —— = e el o
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~previously established set.

A typical provlem in graph manipulation is to establish whether two
cemplicated graphs are isomorphic. In the long run, this might require
tesving all possible permutations of nodes, with a scope of Factorial (n).

tns= 20 this number is an utterly uncomputable 2.b x 1018 steps. On the
other hand, if two graphs are isomorphic, they must have the same HC's, found
with at most 220 = 10° stepsQl

A convenient representation of a HC maps the nodes and edges of the circuit
as vertices and bounding edges of a regular polygon. The remaining n/2 edges
then form chords, each node being one of the two termini of one chord. A
description of the graph then needs only some notation for the n/2 chords.
First, we should canonicate the orientation of the polygon, having chosen
to initialize the HC arbitrarily among n nodes and 2 directions (the rotational
and reflectional symmetries of the polygon). Each node is joined by some
chord having a certain span. The span list can be put in cyclic order, where
it is invariant under rotation; i.e., immaterial which node is selected as

starting point. The effect of reflection is also easily computed. If the

span list is regarded as a number, its minimum value under rotation/reflection

becomes the canonical form. For example, an 8-node graph might be represented (Figure L)

by any one of the span lists 17522663, 31752266, etc., or the reflections
75226631, etc. Of these, one quickly finds that 17522663 is the lowest-valued,
hence the canonical form. Similarly, when other HC's are found for the same
‘graph, they can be compared, and the lowest-valued of them chosen as the
reference graph.

The same procedure establishes a canonical ordering of the nodes and

o m——— i o



edges. For the latter, we take the HC sequence (the polygon) first, then
cach chord in order of first reference.

The span list has n terms. Only n/2 are necessary, since each chord
is referrcd to twice in the span list. For an abbreviated code, simply omit
the scesnd reference. 17522663 becomes 1522, Indeed, one less character still
suffices, the last chord being completely determined by the ones previously
built. The chord list (152), or an alphabetic equivalent (BAEB) whose leading
numeral merely reminds us of the order of the graph, then encodes the graph in
a canonical form (Figure ¥). Furthermore, the graph can be reconstructed from
the code by rctracing the steps just recited. Caution: Unlike span lists,
the abbreviated chord lists cannot be freely rotated.

Chord lists can be computed by an obvious combinatorialiprécedure, with
the help of a few tricks to save some fruitless effort. Most arbitrary lists
become internally inconsistent after a limited number of initial characters; the
number of combinations that must be tested is therefore considerably less than
may appear. Additional restrictions can also be pﬁﬁﬂon prospectively. 1In
this way, exhaustive lists of trivalent graphs have been computed -- Table 3
(taken from the DENDRAL report) shows their scope. To unify isomorphisms,
the complete list of HC's is computed for each chord list.

Apart from the rotation of the polygon, two or more incongruent HC's may
be prescnt in a graph. No general principle is known, except that graphs with

high symmetry tend to have the fewest incongruent HC's. Tutte (1946) proved

" that any edge of a polyhedron must be involved in an even number (not excluding O)

of HC's, and that if a polyhedron admits one HC, it must admit at least three.

Classification of trivalent graphs. Two important, independent criteria
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of abstract graphs are (1) planarity, and (2) level of connectedness.
A planar graph is one that can be represented on the plane without edges
crossing over one another. The graph need not be drawn as an HC-polygon, which

raraly lacks crossing chords: Pi{gure 3 is certainly planar. Kuratowski has

shown that aﬁy trivalent non-planar graph must contain 6CC (Figure 5b).
Fortunately, this condition is easily recognized in the building of span lists,
As the surface of a polyhedron can be mapped onto the plane, planarity is a
necessary condi@ion for an abstract polyhedron.

In practice, nonplanar graphs are so far unknown in organic chemistry
(varring coordination complexes); however, they might in principle be realized,

e.g8., by the hypothetical Figure 5d.

Connectedness is the least®number of cuts that will anywhere separate the

graph. The 3-connected planar graphs are the abstract
convex polyhedra. Intuitively; it is obvious that a region bounded only by

2 cdges would be unable to enclose a volume. Steinitz (see Lyusternik, 1963)
showed that every 3-connected planar trivalent graph could be realized as a
polyhadron., These graphs have, naturally, attracted some interest as a

mecting point of topology and classic Greek geometry. Nevertheless, a complete
enumeration is still unknown. In 1901, Brilckner published figures of the
trivalent polyhedra for n £ 16; in an abstract and unpublished manuscript (1928)

he also showed 1250 for n

18. This work, done by hand over several decades,

was repeated on the computer by Grace (1965) who found some errors in Brlckner's
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listings, and found 1249, However, even this census admits some possibility
of being incomplete, though this is remote. Grace generated the polyhedra

by induction as all possible slicings of the faces of smaller polyhedra. This
produces.many isororphisms which must be ﬁnified; for this, Grace used a
eriterion, "equisurroundedness", which is already known to be too weak, albeit
for much larger graphs. Therefore, it cannot be rigorously shown that the list
of 1249 has not excluded additional forms, equisurrounded, but not isomorphic
with the stated set. The analysis of HC's could afford an independent avenue
of corroboration at relatively low cost.

The polyhedra play an important role in the classification of cyclic‘graphs
but have no remarkable chemical significance except that they represent the
nost tighfly caged polycyclic strhcturesxg/,Note that many unfamiliar iso-
morphisms are generated by portraying a polyhedron as a planar mesh, i.e., as
projected within an arbitrarily chosen fuce, called the base. The projection
can be visualized as the view of the polyhedron from a point just outside the
place of the face chosen as base (Figure 2). |

HC-free pgraphs. These are promptly encountered in the 2-connected series,

starting with ng (8(AC:8,1:A) Figure 6). An analysis of the conditions for no-HC
illuminates some of the combinatorial processes involved in building graphs.
Since all the graphs for n = 6 have HC's, an HC-free graph is generated by a
particular mode of union of HC's of lower order. The simplest mode is

bilincal, one edge is cut on each of two smaller graphs and reunited. If

cither of the'edges involved is barred from any HC of its graph, the bilineal
union will be HC-free. This follows, since the union introduced nodes which

must be traversed by a path known to be forbidden.
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In general, an HC-free graph can be canonicated by dissecting it into the

~ largest cirbuits it contains. The dissertions are first completed across the
bilineal (2-connecting) unions. If any resulting subgraphs are still HC-free, ve
rust consider HC-free polyhedra as a mathematical, if not a pragmatic chemical
possibiligy.

HC-free polvhedra. Tait beljeved that all convex trihedral polyhedra

contained HC's and his conjecture was indeed unchallenged for over 60 years.
However, Tutte (1946) refuted the conjecture with an example ingeniously proven
to be HC-free, though with U6 vertices it would defy exhaustive search.>
Chemical graphs of this order (24 rings) are out of range of systematic prediction,
but the argument gives further insight into the combinatoric of abstract graphs.

We deal here with the process of trilineal union. This can be done in
all possible ways by extracting one node from any source polyhedron, leaving
3 cut edges. This 3-cut graph can then replace one node of another graph.
However, to influence the possibility of forming an HC, the edges must be
subject to some restrictions distinguishing the 3-cut complex from a single
node., The node poses no restrictions. That is, its 3 edges are available in
any pairwise combination, thus any one of 3 ways. If the corresponding edges
of the source graph have the same property, i.e., none of the 3 edges is either
compulsory or forbidden, then the 3-cut graph will not influence the occurrence
of an HC. By induction, the lower order polyhedra that already contain some
3-connccted regions can be passed over in looking for special graphs. A
systematic survey of the few 4-connected, - i.e., b-connected except for the

isolated nodes which are, of course, 3-connected, - graphs (Table L) shows

the polyhedron (16CGDIGDF), the smallest with a special edge, namely that the




ones marked are obligatory in any EC of the polynedron (Figure 7). Tutte

* then replaced 3 nodes of a tetrahedron with a 3-cut graph from (16CGDIGDF)

leading to the contradiction that all three edges from one node must be
included in any HC; hence there can be no EC in this graph of 46 = L + 3(1k)
nodes. The cut graph can also be planied at two mutually-exclusive edges of
the pentagonal prism to give an HC-free polyhedron of 38 = 10 + 2(1L) edgesj<>/
This is clearly the smallest HC-free polyhedron with two 3-connected regions.

A smaller HC-free polyhedron may yet be found by analogous studies of
h-lineaig”hnd S-lineal unions, &nd if so, is just within the bounds of
reasonable computational effort.

If Grace's list of polyhedra is correct, every one through g has an HC.
This conclusion is cor¥oborated by a detailed consideration of the properties

of the graphs n 6 of table 3. By the inductive argument, forms with any

1
triangular face -- indeed, any 3-connected region -- could be passed over,
greatly reducing the computational effort. Of course, from the smallest HC-
free polyhedron, larger ones can be generated by replacing a node with a triangle
or larger 3-connected region.

The HC-free'polyhedra can be classified by the same principles used for

bilincal unions, as complexes of the largest circuits united over the least

levels of connectedness.
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While distant from chemical graphs of any reasonable size, thsse studies
do furnish a clearer indication of the sufficiency of HC representations, and
of the sources of exceptions.

Recapitulation: the scope of anticivation and recognition. There is no

perceptible limit except the computation of HC's and of alternative dissections to
restrict the encoding of abstract graphs either as HC's or as canonicated
unions of HC's. These assignments also facilitate the recognition of isomor-
phisms between given graphs.

The anticipation of all possibilities poses a greater burden. However,
all the graphs up to Ny, (7 rings) have been tabulated together with their
isomorphisms and symmetries. The series expands so rapidly that further
extension would tax the output-printer, and before long the computer itself.

Hanping and symmetry. Having explored the trihedral graphs, we now return

to mapping chemical atoms on their nodes and bonds or linear chains on their
edges. Many graphs have substantial symmetiry, and the corresponding by redundant
operations must be considered to decide on a canonicél representation. Here
again, the HC's are helpful. If an HC is present, it can also be projected on
the same greph after any symmetry operation:\ 'Therefore, the whole set of
symmetry operations is included within the list of the HC's, giving remarkable
econony of computational effort to the search for the symmetries, as well as

& straightforward expression of the operators. To describe a molecular
séructure, it can be mapped on an arbitrary choice of form, and the result then
subJécted to the symmetry operators.. The canonical representation satisfies

some rule, say the highest order listing, of the mapped elements. Thus, for

N\




16.

the morphine nucleus, we would have to choo:se among the 4 symmetries of its

underlying graph: (Figure 8).

Since this choice is readily computable, the human user may be relieved of
the burden to make these tedious calculations.

Besides the linear paths of the cyclic structure, the mapping may also
include specifications for fused edges (l-hedral centers), heteroafom replacements
of vertices, and specifications of sterecasymmetry of vertices. The details
are inevitably fussy and are given elsewhere. After the mapping, each atom is
numbered in the order of its reference.

Merring cycles and trees. Each cyclic structure is now fully defined, with

rules for a canonical code and numbering of every atom. The structure can then
be handled as a node in a tree, the rumbering system allowing precise reference
for the point(s) of connection.

Applications

This development was needed for a continuing effort to program the
autématic computation of structural hypotheses to be matched ag;inst various
gcts of analytical data, especially mass spectra. The growing sophistication of
instrumcnial methods has already begun to outdo the chemists capacity to interpret

the results. Since mass spectrometers are now commercially
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available that can generate 10,000 spectre per second, the need for computational
assistance to make full use of such dersices is self-evident. (Biemann & McMurray
1965; Lederberg 1964b) Such devices are also being considered for the automated
exploretion of the planets, which juts even heavier demands on the local
intelligence“available to the systoen.

These applications relate primarily to the possibility of anticipating
hypothetical structures. The langueze also provides a format for expressing
synthetic insights, i.e., the elementary reactions by which functional groups
can be altered or exchanged. We might then expect the ultimate development of
conputer programs which have been taught a few thousand unit processes, and
their limitations, and could be challenged to anticipate a synthetic route
from given precursors or to a given end product. Such programs.might at
lecast assist the chemist by remindinjy of s few among myriad possibilities of
combining the unit processes learned from the same chemist, or better, from
a diverse school; For the moment we leave out of consideration the empirical
testing in its own laboratory of a few thousand roufes chosen on the computer's
own initiative.

The nomenclatural applications of any system of canonical forms are also
self-evident. We are very nearly at the point where linear notation may again
be dispensable, since the computer should be able to interpret structural grapns
a5 such. However, a mathematically complete system of class}fication of
structures is still important, regardless of the notation in which the
structures are expressed.

The simple graph-theoretical ideas of DENDRAL could be implemented with a

number of possible notations. The one adopted for DENDRAL - 64 aims to emulate
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traditional notation for all linear chains, only the most obvious abbreviations,
like "3." for "C.C.C.", and a "repeat" symbol, arbitrarily "/", being laid on.
The user must of course understand the principles and notation for the abstract
cyclic graphs. However, it would be quite reasonable to produce an abridged
versiOn.of the Ring Index which would list the carbocyclic equivalents of
expected foriis, and allow the most unskilled assistant to transcribe structural
data in a form readily matehed to DENDRAL.

Some examples of structural codes the isomers of alanine, Table 2 are
appended as a challenge to puzzle-minded readers. Hopefully the tedious manual
of detailed specifications (Lederberg 196ia) is not required reading for
pragmatic understanding of the system.

There are of course many alternative approaches to notation reviewed by
a National Academy of Sciences Comnittee (1964) and appearigg froﬁ time to time
in the Journal of Chemical Documentation. As far as I know none of them has
been addressed to the exhaustive prediction of cananical forms and most of

them are too complicated to be easily adaptable to this end.

Syntax and induction. One of the motives for this study was to uncover

the kinds of problems that would be encountered in computer-emulation of the
process of scientific induction from experimental data. A necessary step is a
neans of generating a set of relevant hypotheses. I have been impressed with
both the difficulty and the utility of est;blishing‘a precise syntactical
f;umcwork for the range of hypotheses e¢ven in a field as weli.structured as
organic chenmistry. |

Some years ago, Woodger (1937) attempted to axiomatize developmental and

genctic biology. His efforts were perhaps too remote from the experimental




éata now available., However, he may have pointed the way to a more feasible
enterprise, to establish a precise syniax for hypothetical statements in
biology. This is a more modest aim, since it Goes not purport to deduce which
statements are correct. However, there is every good reason why computers
should compeie very successfully in the exercises of model-building that
preoccupy many biologists today, and with advantage to the rigor with which

they are put together.




FOOTNOTES

SYSTEMATICS OF ORGANIC MOLECULES, GRAPH TOPOLOGY AND HAMILTON CIRCUITS

Footnote p. 9.

1While this paper was being revised, another algorithm requiring only about

10 n2 stéps was discovered and programmed for routine use. It depends on

(1) growing a subgraph, adding one node at a time, (2) defining the list of
possible circuits at each level by recursion from the list of previous level, and
(3) looking ahead some steps to choose nodes which close facets of the graph

80 a8 to minimize the size of the list that must be maintained.

Footnote to p. 12.

2The speculative "polyhedrqnes” have been discussed by Schultz, H.P.: Topological

Organic Chemistry. Polyhedranes and Prismanes. J. Org. Chem. 30, 1361 (1965).

Footnote to p. 13.

3This is no longer true. With a new algorithml, Tutte's graph was exhausted in

29 seconds of 7090 time. The same algorithm is also very apt for finding the

largest circuits and for forbidden edges.

Footnote to p. 1k,

b
This had already been found by other workers as disclosed in private communications:

D. Barnett, University of Washington and J. Bosak, Bratislava.

Footnote to p. 1k.

‘STutte (1960) quotes an example with 224 nodes! If any HC-free polyhedron has
fewver than 38 nodes it probably has one 3-connected region. My own investigations

leave no encouragement for such an example at less than Dyce



FOOTNOTES CONTINUED 2

Footnote to p. 15.

61 note the following conjecture, that the symmetries of any abstract convex

trihedral polyhedron can be realized in a geometrical polyhedron in 3-space

with reflection, i.e. can be assigned to a point group. However, this
conjecture is not a premise of the method indicated for finding the symmetries,
The conjecture is plainly inapplicable to 2-connected or to non-planar graphs.

I would be grateful for any refntatioq' or a formal proof, new or otherwise,
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Fig. 1. Centers of trees: r (radius-center), and m (mass-center). Two
examples, A., methionine, and B., leucine; The diagrams were plotted by a

computer program from punch cards coded for each structure as indicated.
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Fig. 2. (a) Benzoperylene and its mapping on a polyhedron (b) which has

four isomorphic planar meshes, i.e. four kinds of faces, as labelled. (c) 1s
the equivalent Hamilton circuit., Do not confuse the lettered labels of the
nodes with abbreviated code for this graph whitch is 10BCC. The reader may

enjoy satisfying himself that these graphs are indeed isomorphic (equi-connected).

e e e



Fig. 3. Hamilton's Hamilton circuit. The abstract dodecahedron, represented

as a planar map of 20 nodes.
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‘E;g;_g,.. Sy;metries and encoding of a cyclic trivalent graph with 8 nodes.
There are 16 symmetry operation (8 rotational X 2 reflection). Shown are

8 rotations, and a reflection that could be combined with each of these. With
each figure is also a span list; the canonical choice of the 16 (not all distinct)
is the lowest valued span list, 17522663, calculated with the upper rightmost node
a8 the initial. This can then be reduced to the code AEBB, or even more econo-

mically AEB, as outlined in the text,
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(a) (v) (c) (d)

Fig, 5. Non planar graphs. (a) and (b) are Kuratowski's fundamental forms,
4-valent and 3-valent respectively. At least one of these must be included in
any nonplanar graph. (c) is a projection of (b) as a tetrahedron with an additional

internal chord, and (d) is a hypothetical molecular structure that maps on to (c).
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Fig. 6. The cyclic, trivalent planar graphs with 8 or fewer nodes. Where
possible, these are represented as Hamilton circuits, the nodes of the graph
being projected as vertices of a polygon which constitutes the circuit, the
remaining edges shown as chords. Each of these figures can also be drawn as a
planar map. The codes are abbreviated forms from which the graph can be recon-
structed. Note that 8BCC and 8BDD are isomorphic despite the incongruence of the
Hamilton circuits. The abstract polyliedra of this list include two degenerate
forme (~, circle; 2, hosohedron) and 4B, tetrahedron; 6BC, prism; 8 CEC, cube;
8BCC = 8BDD, pentagonal wedge., One of these graphs,_8(6C:8,1:2) has no Hamilton
circuit, and is classified as a union which splices the 8'th edge of graph 6AC
vith the 1'st edge of graph 2. Complete lists of the graphs tb;ough 12 nodes

are presented in Lederberg (1965).
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Fig. 7. A graph with special edges and two HC~free polyhedra. (a) has 16
nodes. The marked edges are included in any HC of the graph. Hence the 3-cut

(b), with 15 nodes, obligates the marked edge as part of an HC of any graph in

which (b) is inserted. This leads to a contradiction, i.e., no Hamilton circuit

in (c) Tutte's graph, with 46 nodes and (d) with 38 nodes.




CANONICAL
MAP

HAMILTON CIRCULIT REPRESENTATIONS

Fig. 8. Morphine nucleus: symmetry and choice for coding. The dashed edge
7---8 stands for the spiro- (quadriyalent) center in the morphine ring; however,

4 permutations are possible under the symmetry operations. In the canonical form,
after account is taken of the mapping of the chemical graph onto the abstract graph,
this edge is iabelled 2=~=3), The canonical map would be coded as

(88DD-N.3,$, , ,3,03,,C) each comma marking the next edge of the map. This code R

ie sufficient input for the computer program to reconstruct the molecular structure

and return the familiar two-dimensional graphic representation of it.



FNUMFRATION OF THE ALKANES
STEREISOMERISM DISREGARDED

[ . [ 26 923830412
2 1 27 240215803
3 1 28 617105614
4 2 29 1590507121 *
5 3 30 4111846763
6 5 31 10660307791
7 Q 32 27711253769 %
8 18 33 72214088660
9 35 34 188626236139
10 , 75 35 493782052902
11 . 159 . 36 1295297588128
12 355 37 3404490780161
13 802 38 RAKLGTLTHLTHGOS
14 . ' 1858 39 23647478933960Q
15 4347 40 67481801147341 %
16 10359 41 165351455535782
17 24894 42 438242804769226
18 605273 43 1163169707886427
19 148284 % 44 32091461011836656
20 366319 45 8227162372221203
21 910726 46 21921834086683260
22 2278658 47 584818066219856230
23 5731580 48 . 156192366474587200
24 14490245 49 T 417612400765371900
25 . 36797588 50 1117743651746931000

‘‘able 1. Enumeration of isomeric alkanes (disregarding stereoisomerism), from
methane to pentacontane. 'fhe values marked ® disagree in some digits with the
values calculated manually by Henze and Blair (1931) and Perry (1932). While

this is an amusing exercise for the computer, the discrepancies, needless to aaj,
will have no pragmatic chemical significance. In any case, a proportion of th;

structures will be unrealizable owing to steric hindrance.
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‘able 2, The isomers of alanine (.C..CN C.=00 ) systematically ordered in DENDRAL-64
iotation. Each

wst be satisfied by a trailing atom or radical.

stands for a single or double bond respectively which

This will be the first previously

inreferenced item in the list to the right of the bond.

t central link, which must then be followed by two radicals.

A leading bond constitutes

A space 1s used

0 separate the primary radicals for convenience in reading but has no coding

ignificance.
orms; an equal number are their tautomers.
r Schiff bases or similar unstable forms.

Some 25 of these topological possibilities are recognized chemical
Most of the remainder are either p&roxides
A few, like hydracrylaldoxime, (.C.C.0 C=N,0)

ight be realizable but were not found in a cursory search of the literature.
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